Generalized parton distributions at EIC

M. Diehl

Deutsches Elektronen-Synchroton DESY

EIC Collaboration Meeting LBNL, 12 December 2008

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

- 1. Some reminders about GPDs
- 2. From processes to GPDs
- 3. Physics from GPDs: nucleon tomography
- 4. Spin and orbital angular momentum
- 5. Processes to measure GPDs
- 6. Conclusions

charge from the organizers:

- focus on issues that EIC will address
- what remains to be done to establish a scientific and facility case

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Some brief reminders

- GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$
 - $\mathcal{O} =$ operator with quark or gluon fields along light cone same as for usual parton densities

▶ for $p \neq p'$ have two mom. fractions x, ξ and $t = (p' - p)^2$ at given ξ can trade t for transverse mom. transfer $\Delta = p' - p$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Some brief reminders

- GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$
 - $\mathcal{O} =$ operator with quark or gluon fields along light cone same as for usual parton densities

- ▶ for $p \neq p'$ have two mom. fractions x, ξ and $t = (p' p)^2$ at given ξ can trade t for transverse mom. transfer $\Delta = p' - p$
- for unpolarized quarks two distributions:
 - H^q conserves proton helicity for p=p' recover usual densities q(x) and $\bar{q}(x)$
 - E^q responsible for proton helicity flip decouples for p = p'

similar definitions for polarized quarks and for gluons

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Some brief reminders

- GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$
 - $\mathcal{O} =$ operator with quark or gluon fields along light cone same as for usual parton densities

- ▶ for $p \neq p'$ have two mom. fractions x, ξ and $t = (p' p)^2$ at given ξ can trade t for transverse mom. transfer $\Delta = p' - p$
- ► $\int dx \, x^n \text{GPD}(x,\xi,t) \rightarrow \text{ local operators} \rightarrow \text{ form factors}$ calculations in lattice QCD
- ► lowest moments: $\int dx H^q(x,\xi,t) = F_1^q(t)$ (Dirac) and $\int dx E^q(x,\xi,t) = F_2^q(t)$ (Pauli)

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Partonic interpretation

$$\begin{split} |x| > \xi \quad \text{similar to parton densities} \\ & \text{correlation } \psi^*_{x-\xi} \; \psi_{x+\xi} \; \text{ instead of probability } \; |\psi_x|^2 \\ & |x| < \xi \; \; \text{coherent emission of } q\bar{q} \; \text{pair} \end{split}$$

 regions related by Lorentz invariance spacelike partons incoming in some frames, outgoing in others

$$\rightsquigarrow \int_{-1}^{1} dx \, x^n \operatorname{GPD}(x,\xi,t) = \operatorname{polynomial} \operatorname{in} \xi$$

▶ not much known about relation $GPD(x, \xi, t) \leftrightarrow GPD(x, 0, t)$ (skewness effect)

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Some more reminders

- Generalized parton distributions appear in description of hard exclusive processes
- for a number of cases have factorization theorems using collinear factorization

Collins, Frankfurt, Strikman '96; Collins, Freund '98

key processes:

deeply virtual Compton scattering

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Some more reminders

- Generalized parton distributions appear in description of hard exclusive processes
- for a number of cases have factorization theorems using collinear factorization

Collins, Frankfurt, Strikman '96; Collins, Freund '98

key processes:

- deeply virtual Compton scattering
- meson production: large Q^2 or heavy quarks $(J/\Psi, \Upsilon)$

s	Getting	GPDs
	0000	

Basic

Tomography 0000

іу

Spin 0000 rocesses

Conclusions

Hard exclusive processes $\xrightarrow{?}$ GPDs

amplitudes for DVCS and vector meson production at LO in α_s :

$$\mathcal{H}(\xi,t) = \int_{-1}^{1} dx \, H(x,\xi,t) \left[\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right]$$

Im $\mathcal{H}(\xi,t) = \pi \left[H(\xi,\xi,t) - H(-\xi,\xi,t) \right]$
Re $\mathcal{H}(\xi,t) = \text{PV} \int_{-1}^{1} dx \, H(x,\xi,t) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right]$

for brevity suppress quark flavor labels analogous eq's for mesons with other quantum numbers

 $\xi = x_B/(2-x_B)$ and t are measurable, x is loop variable

- Im part only involves GPDs at $x = \pm \xi$
- Re part sensitive to full x region
- \blacktriangleright dispersion relations: calculate ${\rm Re}$ from ${\rm Im}$

up to an energy independent constant

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Dispersion relations for hard exclusive processes

O.V. Teryaev '05, I.V. Anikin and O.V. Teryaev '07 K. Passek-Kumerički et al. '07; M.D. and D.Yu. Ivanov '07

 \blacktriangleright dispersion relation for amplitude at fixed t and Q^2

$$\operatorname{Re}\mathcal{H}(\xi,t) \stackrel{\text{LO}}{=} \operatorname{PV} \int_{-1}^{1} dx \, H(x,x,t) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right] + C(t)$$

consistency with

$$\operatorname{Re} \mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \operatorname{PV} \int_{-1}^{1} dx \, H(x, \xi, t) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right]$$

ensured by polynomiality, i.e. by Lorentz invariance

- subtraction constant
 - associated with pure spin-zero exchange in t-channel
 - related with Polyakov-Weiss D-term

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	○○●○	0000	0000	00000000	00

Practical consequences

 \blacktriangleright at leading order in α_s

 $\operatorname{Im} \mathcal{H}(\xi, t, Q^2) \quad \text{from} \quad H(\xi, \xi, t; Q^2)$

 $\operatorname{Re} \mathcal{H}(\xi,t,Q^2) \quad \text{from} \quad H(x,x,t;Q^2) \text{ at all } x \quad \text{and } C(t)$

- amplitude determined by GPD(x, x) and subtraction constant
- Re sensitive to x range around measured ξ

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	00●0	0000	0000	00000000	00

Practical consequences

 \blacktriangleright at leading order in α_s

Im $\mathcal{H}(\xi, t, Q^2)$ from $H(\xi, \xi, t; Q^2)$ $\mathbb{P}_{2}\mathcal{I}(\xi, t, Q^2)$ from $H(\xi, \xi, t; Q^2)$

 $\operatorname{Re} \mathcal{H}(\xi,t,Q^2) \quad \text{from} \quad H(x,x,t;Q^2) \text{ at all } x \quad \text{and } C(t)$

- \bullet amplitude determined by ${\rm GPD}(x,x)$ and subtraction constant
- Re sensitive to x range around measured ξ

•
$$Q^2$$
 dependence from evolution:

$$\frac{d}{d\ln Q^2} H(\xi,\xi,t;Q^2) = \text{kernel} \otimes \left\{ H(x,\xi,t;Q^2) \text{ for } |x| \ge \xi \right\}$$

- sensitive to GPD in region $|x| \geq \xi$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	00●0	0000	0000	00000000	00

Practical consequences

 \blacktriangleright at leading order in α_s

Im $\mathcal{H}(\xi, t, Q^2)$ from $H(\xi, \xi, t; Q^2)$ $\mathbb{P}_{2}\mathcal{I}(\xi, t, Q^2)$ from $H(\xi, \xi, t; Q^2)$

 $\operatorname{Re} \mathcal{H}(\xi,t,Q^2) \quad \text{ from } \quad H(x,x,t;Q^2) \text{ at all } x \quad \text{ and } C(t)$

- amplitude determined by $\operatorname{GPD}(x, x)$ and subtraction constant
- Re sensitive to x range around measured ξ

•
$$Q^2$$
 dependence from evolution:

 $\frac{d}{d\ln Q^2} H(\xi,\xi,t;Q^2) = \text{kernel} \otimes \left\{ H(x,\xi,t;Q^2) \text{ for } |x| \ge \xi \right\}$

- sensitive to GPD in region $|x| \geq \xi$
- beyond leading order in α_s find
 - amplitude determined by GPD in region $|x| \geq \xi$ and more complicated subtraction constant

▶ at LO accuracy information about GPD(x, x)
 and subtraction constant
 → LO phenomenology relatively simple, but restricted

cannot reconstruct $\mathsf{GPD}(x,\xi,t)$ as function of x

- ▶ sensitivity to $|x| \ge \xi$ from evolution/higher orders in α_s requires lever arm in Q^2 at given ξ , i.e. given x_B
- ► then can reconstruct region |x| ≤ ξ from polynomiality up to ambiguity corresponding to subtraction const. explicit construction: K. Passek-Kumerički, D. Müller, K. Kumerički '08

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	●000	0000	0000000	00

Nucleon tomography: impact parameter

- ► at fixed longitudinal momentum fractions x, ξ : t dependence of GPD \rightarrow transverse mom. transfer Δ \rightarrow Fourier transform to position b of struck parton
- > no relativistic corrections; consistent with uncertainty principle
- ► for $\xi = 0$ have joint density in long. momentum fraction x and transv. position b $q(x, b^2) = (2\pi)^{-2} \int d^2 \Delta e^{-ib\Delta} H^q(x, \xi = 0, t = -\Delta^2)$ M. Burkardt '00, '02

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	●000	0000	0000000	00

Nucleon tomography: impact parameter

- ► at fixed longitudinal momentum fractions x, ξ : t dependence of GPD \rightarrow transverse mom. transfer Δ \rightarrow Fourier transform to position b of struck parton
- > no relativistic corrections; consistent with uncertainty principle
- ► for $\xi = 0$ have joint density in long. momentum fraction x and transv. position b $q(x, \mathbf{b}^2) = (2\pi)^{-2} \int d^2 \mathbf{\Delta} \, e^{-i\mathbf{b}\mathbf{\Delta}} H^q(x, \xi = 0, t = -\mathbf{\Delta}^2)$ M. Burkardt '00, '02

•
$$q(x, b^2)$$
 not Fourier conjugate to $q(x, k^2)$

transverse mom. dependent density

both generated by higher-level function

$$\begin{array}{ccc} q(x,\boldsymbol{k}^2) & \stackrel{\boldsymbol{\Delta}=\boldsymbol{0}}{\leftarrow} & H(x,\boldsymbol{\xi}=\boldsymbol{0},\boldsymbol{\Delta},\boldsymbol{k}) & \stackrel{\int d^2\boldsymbol{k} \; d^2\boldsymbol{\Delta} \; e^{-i\boldsymbol{b}\boldsymbol{\Delta}}}{\rightarrow} & q(x,\boldsymbol{b}^2) \end{array}$$

 \rightsquigarrow complementary information about transverse structure

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Nucleon tomography: impact parameter

- ▶ for $\xi \neq 0$ get distance of quark to "average" positions of initial and final proton
 M. Diehl '02
- situation again simple for $x = \xi$
 - $oldsymbol{\Delta}
 ightarrow oldsymbol{b}$ with $t = rac{\zeta^2 m_p^2 + oldsymbol{\Delta}^2}{1-\zeta}$

$$\xi = \frac{\zeta}{2-\zeta}$$

distance of struck parton from spectator system

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

- For x < m_π/m_p: effects from pion cloud
 → chiral dynamics
 M. Strikman, Ch. Weiss '03-'08
- ► small *x*: shrinkage

use as approx. parameterization

$$\begin{array}{lll} H(x,0,t) \ \sim \ H(x,x,t) \ \sim \ x^{-\alpha-\alpha' t} \\ \langle b^2 \rangle \ \sim \ \alpha' \log(1/x) \end{array}$$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

- For x < m_π/m_p: effects from pion cloud
 → chiral dynamics
 M. Strikman, Ch. Weiss '03-'08
- ► small *x*: shrinkage use as approx. parameterization

$$H(x,0,t) \sim H(x,x,t) \sim x^{-\alpha-\alpha't}$$

 $\langle b^2 \rangle \sim \alpha' \log(1/x)$

- ▶ meson trajectories $\rightarrow \alpha' \sim 1 \,\text{GeV}^{-2}$ if taken for valence quarks \rightarrow good description of $F_1(t)$ data M.D. et al. '04, M. Guidal et al. '04
- ▶ vector meson prod'n \rightsquigarrow gluons HERA data → small but nonzero $\alpha' \sim 0.1 \dots 0.2 \, {\rm GeV}^{-2}$
- ▶ DVCS \rightsquigarrow gluons and sea quarks current errors at HERA too large for α' determ'n
- transition from soft to hard dynamics?
- interplay between gluons and sea quarks?

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

- ► impact parameter transform of E(x, ξ, t) → spin-orbit correlations
 - parton distribution in nucleon polarized along *x*-axis is shifted in *y* direction
 M. Burkardt '02

$$q^X(x, \boldsymbol{b}) = q(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e^q(x, \boldsymbol{b}^2)$$

where $e^q(\boldsymbol{x},\boldsymbol{b})$ is Fourier transform of $E^q(\boldsymbol{x},\boldsymbol{\xi}=0,t)$

semi-classical picture: rotating matter distribution

gives alternative view on Ji's sum rule $L^x = b^y p^z$ M. Burkardt '05

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	000●	0000	0000000	00

- ► impact parameter transform of E(x, ξ, t) → spin-orbit correlations
 - parton distribution in nucleon polarized along x-axis is shifted in y direction
 M. Burkardt '02

$$q^X(x, \boldsymbol{b}) = q(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e^q(x, \boldsymbol{b}^2)$$

where $e^q(x,b)$ is Fourier transform of $E^q(x,\xi=0,t)$

explanation of Sivers effect by chromodynamic lensing

struck quark interacts with spectators \Rightarrow anisotropic p_T distrib. anisotropic spectator distribution \Rightarrow of struck quark

M. Burkardt '04 figure from arXiv:0807.2599

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

The proton spin budget

sum rule

$$\begin{aligned} J^{q} &= \frac{1}{2} \int dx \, x (H^{q} + E^{q}) \Big|_{\substack{t=0\\\xi=0}} \qquad J^{g} &= \frac{1}{2} \int dx \, (H^{g} + E^{g}) \Big|_{\substack{t=0\\\xi=0}} \end{aligned} \\ \text{with} \quad \frac{1}{2} &= J^{g} + \sum_{q} J^{q} \end{aligned}$$

Further decomposition L^q = J^q − ¹/₂Σ with Σ from ordinary parton densities

•
$$E^{q,g} \leftrightarrow \Delta L^3 = 1$$
 from helicity imbalance

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

The proton spin budget

sum rule

X. Ji '06,'07

$$J^{q} = \frac{1}{2} \int dx \, x (H^{q} + E^{q}) \Big|_{\substack{t=0\\\xi=0}} \qquad J^{g} = \frac{1}{2} \int dx \, (H^{g} + E^{g}) \Big|_{\substack{t=0\\\xi=0}}$$

with $\frac{1}{2} = J^g + \sum_q J^q$

Further decomposition L^q = J^q − ¹/₂Σ with Σ from ordinary parton densities

$$\blacktriangleright$$
 lattice \rightsquigarrow Σ and J^q

• directly get integrals over x at $\xi = 0$

• exclusive processes \rightsquigarrow GPDs \rightsquigarrow J^q and (more difficult) J^g

- exclusive (and inclusive) processes: $\int dx$ difficult
- measure at $\xi \neq 0$
- but get access at x dependence of $E^{q,g}(x,x,t)$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Small and large x in Ji's sum rule

▶ in $\int_0^1 dx \, xq(x)$ only little contrib'n from $x < 10^{-2}$ or x > 0.5quite different for helicity integrals $\int_0^1 dx \, \Delta q(x)$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Constraints from positivity

M.D., in preparation

• positivity of
$$q^X(x, b)$$
 ensured by

M. Burkardt '03

 $\left| E(x,0,0) \right|^2 \le \left[q(x) + \Delta q(x) \right] \left[q(x) - \Delta q(x) \right] \, m^2 \langle b^2 \rangle_{q \pm \Delta q}$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

There is more to a function than its integral

constraints on E:

- ▶ at t = 0 have $\int_{-1}^{1} dx E^{u} > 0$ and $\int_{-1}^{1} dx E^{d} < 0$ from magnetic moments
- ► at t = 0, $\xi = 0$ have $\int_{-1}^{1} dx \, x \sum_{q} E^{q} + \int_{0}^{1} dx \, E^{g} = 0$ from momentum conservation lattice finds small $\int_{-1}^{1} dx \, x \sum_{q} E^{q} \Rightarrow \int_{0}^{1} dx \, E^{g}$ small $\Rightarrow E^{g}$ small unless has a node in x

very different from situation for ${\cal H}^g$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

There is more to a function than its integral

constraints on E:

- ▶ at t = 0 have $\int_{-1}^{1} dx E^{u} > 0$ and $\int_{-1}^{1} dx E^{d} < 0$ from magnetic moments
- ► at t = 0, $\xi = 0$ have $\int_{-1}^{1} dx \, x \sum_{q} E^{q} + \int_{0}^{1} dx \, E^{g} = 0$ from momentum conservation lattice finds small $\int_{-1}^{1} dx \, x \sum_{q} E^{q} \Rightarrow \int_{0}^{1} dx \, E^{g}$ small

 $\rightsquigarrow E^g$ small unless has a node in x

very different from situation for ${\cal H}^g$

- what about sea quark contribution?
 - mainly generated from E^g by evolution?
 - same sign for \bar{u} and \bar{d} ? nodes in x?
 - \rightsquigarrow dynamical origin of sea quarks
- whether E^g and/or E^q have nodes in x hard or impossible to infer from a few x moments

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	•0000000	00

The key process: DVCS

- good theoretical control:
 - NLO and NNLO corrections (at twist two) typically small except for scaling violation at very small x_B , where evolution effects analogous to inclusive DIS

- close connection to inclusive DIS \leadsto may reach Bjorken regime at moderately large Q^2
- large number of observables accessible to GPD approach
 - both twist two and twist three amplitudes
 - using interference with Bethe-Heitler can separate Im and Re of Compton amplitude → most direct connection with GPDs

for more information wait a few slides

D. Müller et al. '05-'07

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	•0000000	00

The key process: DVCS

- good theoretical control:
 - NLO and NNLO corrections (at twist two) typically small except for scaling violation at very small x_B , where evolution effects analogous to inclusive DIS

D. Müller et al. '05-'07

- close connection to inclusive DIS \leadsto may reach Bjorken regime at moderately large Q^2
- but: DVCS provides limited information
 - on quark flavor separation
 - at LO get 4u + d + s with proton target
 - in addition u + 4d + s with neutron target
 - gluon distributions only through scaling violation and NLO
 - ... just as inclusive DIS

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Meson production

► vector mesons ρ, ω, φ and J/Ψ, Υ → sensitivity to gluon gluon already visible in HERMES kinematics follows from comparing φ with ρ production

M.D. and A.V.Vinnikov '04

 may complement DVCS for quark flavor separation interesting non-singlet channels, e.g.

$$\gamma^* p \to \rho^+ n \quad \leftrightarrow \quad u - d$$

 $\gamma^* p \to K^* \Sigma \quad \leftrightarrow \quad d - s \qquad \text{if use SU(3) flavor symm.}$

however, typically small cross sections at small x

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Meson production

- \blacktriangleright but: corrections larger than for DVCS at moderate Q^2
- ▶ power corrections in 1/Q² inclusion of intrinsic quark k_T in hard scattering
 → successful phenomenology
 P. Kroll, S. Goloskokov '06-'08 based on modified hard scattering formalism of Sterman et al. gives estimate but no systematic evaluation of power corrections
- NLO corrections in hard scattering
 - \blacktriangleright moderate to large x: typical $K\text{-factors}\sim 2$ in cross section
 - NLO corrections tend to cancel in some ratios but not in all D.Yu. Ivanov et al. '04, M.D. and W. Kugler '07
 - at small x huge NLO corrections ongoing work on resummation of BFKL logs

 \rightsquigarrow for quantitative analysis of meson production want

largest possible Q^2

D.Yu. Ivanov and A. Papa '07

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

The cherry on the cake: double DVCS

- $\blacktriangleright \text{ subprocess } \gamma^*_{\text{ spacelike }} p \to \gamma^*_{\text{ timelike }} p$
- at LO have $\operatorname{Im} \mathcal{A} \propto \mathsf{GPD}(\xi, \eta, t)$

with $\xi < \eta$ fixed by photon virtualities

 \rightsquigarrow direct access to region of $q\bar{q}$ emission

► measure in $ep \rightarrow ep \gamma^* \rightarrow ep \mu^+ \mu^$ using angular distrib. and spin asymmetries similar to DVCS not possible for $ep \rightarrow ep + \gamma^* \rightarrow ep e^+ e^-$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	00000000	

Making the most of DVCS

competes with Bethe-Heitler process at amplitude level

 \blacktriangleright cross section for $\ell p \to \ell \gamma p$

$$\frac{d\sigma_{\rm VCS}}{dx_B \, dQ^2 \, dt} : \frac{d\sigma_{\rm BH}}{dx_B \, dQ^2 \, dt} \sim \frac{1}{y^2} \frac{1}{Q^2} : \frac{1}{t} \qquad \qquad y = \frac{Q^2}{x_B \, s_{\ell p}}$$

- visible interference term unless y is very small
- \blacktriangleright key variable: azimuth ϕ between lepton and hadron planes
- following slides:
 - \blacktriangleright how to extract the interference, relevance of e^+ beam
 - possibilities with lepton and nucleon polarization

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	00000000	00

GPD combinations in interference term made simple

$$\begin{array}{ll} \mbox{target pol.} & \mbox{interference } \propto & r = \frac{\iota_0 - \iota}{4m^2} \\ \mbox{Unpolarized} & \sqrt{r} \left[F_1 H + \xi(F_1 + F_2) \widetilde{H} + rF_2 E \right] \\ \mbox{Longitudinal} & \sqrt{r} \left[F_1 \widetilde{H} + \xi(F_1 + F_2) H + (rF_2 - \xi F_1) \xi \widetilde{E} \right] & + \sqrt{r} \xi^2 \mathcal{O}(E, \xi \widetilde{E}) \\ \mbox{Normal} & r \left[F_2 H - F_1 E + \xi(F_1 + F_2) \xi \widetilde{E} \right] & + \xi^2 \mathcal{O}(H, E, \widetilde{H}) \\ \mbox{Sideways} & r \left[F_2 \widetilde{H} - F_1 \xi \widetilde{E} + \xi(F_1 + F_2) E - \xi F_2 \xi \widetilde{E} \right] + \xi^2 \mathcal{O}(H, E, \widetilde{H}, \xi \widetilde{E}) \\ \end{array}$$

count $\xi \widetilde{E}$ since pion exchange gives $\widetilde{E} \propto 1/\xi$

+

• neglecting F_1 for neutron (small t) get

 $\begin{array}{ll} \mbox{target pol.} & \mbox{interference } \propto \\ U & \sqrt{r} \left[\xi \widetilde{H} + rE \right] F_2 \\ L & \sqrt{r} \left[\xi H + r\xi \widetilde{E} \right] F_2 \\ N & r \left[H + \xi^2 \widetilde{E} \right] F_2 \\ S & r \left[\widetilde{H} + \xi E - \xi^2 \widetilde{E} \right] F_2 \end{array}$

with long. and transv. target pol. can separate all four GPDs

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	00000000	00

Structure of differential cross section (unpolarized target)

 $\sigma_{ep \to e\gamma p} = \sigma_{\rm BH} + e_{\ell} \,\sigma_{\rm INT} + P_{\ell} e_{\ell} \,\tilde{\sigma}_{\rm INT} + \sigma_{\rm VCS} + P_{\ell} \,\tilde{\sigma}_{\rm VCS}$

 $\begin{array}{ll} \text{where} & \sigma \text{ even in } \phi & \sigma_{\text{INT}} \propto \operatorname{Re} \mathcal{A}_{\gamma^* N \to \gamma N} \\ & \tilde{\sigma} \text{ odd in } \phi & \tilde{\sigma}_{\text{INT}} \propto \operatorname{Im} \mathcal{A}_{\gamma^* N \to \gamma N} \end{array}$

beam charge	beam pol.	combination
e^-	difference	$- ilde{\sigma}_{ m INT}+ ilde{\sigma}_{ m VCS}$
difference	none	$\sigma_{ m INT}$
difference	fixed	$P_{\ell}\left(ilde{\sigma}_{\mathrm{INT}}+\sigma_{\mathrm{INT}} ight)$

so that with	
only pol. e^-	need Rosenbluth to separate $ ilde{\sigma}_{\mathrm{INT}}$ from $ ilde{\sigma}_{\mathrm{VCS}}$
	(different y at same x_B and Q^2)
unpol. e^- and e^+	get $\sigma_{ m INT}$
pol. e^- and pol. e^+	get $\sigma_{ m INT}$ and separate $ ilde{\sigma}_{ m INT}$ from $ ilde{\sigma}_{ m VCS}$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	00

Structure of differential cross section (polarized target)

 $\sigma_{ep \to e\gamma p} = \sigma_{\rm BH} + e_{\ell} \,\sigma_{\rm INT} + P_{\ell} e_{\ell} \,\tilde{\sigma}_{\rm INT} + \sigma_{\rm VCS} + P_{\ell} \,\tilde{\sigma}_{\rm VCS}$

+ $S[P_{\ell} \Delta \sigma_{\rm BH} + e_{\ell} \Delta \tilde{\sigma}_{\rm INT} + P_{\ell} e_{\ell} \Delta \sigma_{\rm INT} + \Delta \tilde{\sigma}_{\rm VCS} + P_{\ell} \Delta \sigma_{\rm VCS}]$

where polarization S can be longitudinal or transverse

beam charge	beam pol.	target pol.	combination
e^{-}	difference	none	$- ilde{\sigma}_{ m INT}+ ilde{\sigma}_{ m VCS}$
difference	none	none	$\sigma_{ m INT}$
difference	fixed	none	$P_{\ell}\left(ilde{\sigma}_{\mathrm{INT}}+\sigma_{\mathrm{INT}} ight)$
e^{-}	none	difference	$-\Delta \tilde{\sigma}_{ m INT} + \Delta \tilde{\sigma}_{ m VCS}$
difference	none	fixed	$S\Delta ilde{\sigma}_{ m INT}+\sigma_{ m INT}$
difference	fixed	fixed	$S\Delta\tilde{\sigma}_{\rm INT} + P_{\ell}\tilde{\sigma}_{\rm INT} + SP_{\ell}\Delta\sigma_{\rm INT} + \sigma_{\rm INT}$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	00000000	• 0

Conclusions

what remains to be done to establish a scientific and facility case?

my feeling is that we have good elements for a physics case:

- identified quantities to reveal aspects of QCD dynamics
- solid theory to extract such quantities from observables we cannot presently promise to fully deconvolute functions GPD(x, ξ, t), but I think a physics case need not rely on this

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	•0

Conclusions

what remains to be done to establish a scientific and facility case?

- it remains to see and show what can be quantitatively achieved with a given EIC design
 - DVCS
 - extraction of azimuthal and polarization asymmetries or (better) cross section differences
 - ▶ two-dimensional spectra in (t, x_B) → nucleon tomography
 - ▶ two-dimensional spectra and kinematic reach in (x_B, Q^2) → information beyond GPD(x, x, t)
 - change of t dependence with $Q^2 \longrightarrow$ scale evolution of $\langle b^2 \rangle$
 - meson production: kinematic reach and rates for high Q^2 possibilities for non-singlet channels, e.g. ρ^+, K^*
 - possibility to measure azimuthal asymmetries in double DVCS $(ep \rightarrow ep + \mu^+ \mu^-)$

Basics	Getting GPDs	Tomography	Spin	Processes	Conclusions
000	0000	0000	0000	0000000	0●

Conclusions

requirements on machine (in order of priority)

- 1. clean measurement and kin. reconstruction of DVCS*
- 2. polarized e^- beam
- 3. polarized proton beam
- 4. (if possible polarized) e^+ beam **
- 5. (if possible polarized) deuteron beam and tagging of spectator nucleon

* an oxymoron

 ** without polarized e^+ beam may need different collision energies